За исключением специального случая (когда скорость направлена точно к S или точно в противоположную сторону) орбиты оказались кривыми линиями. К тому же, движение по орбитам неравномерно. Самая большая скорость — в перицентре (ближайшей к S точке орбиты), и чем дальше от перицентра, тем она меньше. Наименьшая скорость в случае эллипса — в апоцентре (наиболее удаленной от S точке орбиты).
Дадим количественные соотношения. Расстояние r от S до перицентра выражается через большую полуось а (среднее расстояние от движущегося тела до S) и эксцентриситет е по формуле r=а(1—е). Расстояние r от S до апоцентра r=а(1+е). Скорости в экстремальных точках (апсидах) эллипса составляют:
υ=υ(a)√(1+e)/√(1—e) и υ=υ(a)√(1—e)/√(1+e)
Здесь υ(a) — круговая скорость на расстоянии от a до S. В свою очередь υубывает обратно пропорционально квадратному корню из расстояния до S: υ=K/√r.
Между большой полуосью и периодом обращения существует связь, открытая еще И. Кеплером в начале XVII в.:
Р = 2π(а/K) (5)
Разумеется, выражение постоянной К через G и М — заслуга Ньютона.
Если эллипс близок к окружности, различие скоростей в разных точках орбиты невелико. У Земли в ее движении вокруг Солнца е=0,016, υ=31км/с, υ=29км/с. У кометы Галлея эллипс очень вытянут: е=0,96; так что υ=51км/с, υ=1км/с. Такой характер ускорений и замедлений на орбите понять легко, если воспользоваться аналогией с вращением грузика на стержне вокруг горизонтальной оси. Внизу скорость наибольшая, наверху — наименьшая. В нашей задаче «вниз» — это направление к притягивающему центру, «вверх» — прочь от него. Причина изменений скорости и для планеты, и для маятника одна: закон сохранения энергии. «Наверху» потенциальная энергия гравитации максимальна, «внизу» — минимальна. Для кинетической энергии соотношение противоположно.
Набор орбит оказался небольшим. В век космонавтики мы можем выбирать высоту или период обращения искусственных небесных тел в широких пределах, но в силу (5) по отдельности, а не вместе. Наименьший период обращения ИСЗ — полтора часа — соответствует круговой орбите минимальной высоты. Максимального периода теоретически нет, но подавляющее большинство ИСЗ имеют период не более 24 час.
Многие искусственные спутники Земли (ИСЗ) летают низко, почти царапая Землю: в масштабе школьного глобуса (1:50000000) не далее сантиметра от него. Тут уж даже Землю шаром считать нельзя, хоть на глазок это и незаметно. А вот Юпитер и особенно Сатурн обладают отчетливо видимым сжатием. Одним словом, чтобы идти дальше, надо разобраться с формой небесных тел и их притяжением.
Начнем с последнего. Пусть нам известна форма и строение протяженного небесного тела Т. Как определить силу тяготения, с которой Т притягивает какую-либо частицу Q? Перейдем к ускорению — оно не зависит от массы пробной частицы (уникальное свойство гравитационного поля, открытое Г. Галилеем). Поэтому можно считать, что Т создает вокруг себя (и в себе самом тоже) поле ускорений, математически точное описание гравитационного поля. Как найти его? Разобьем мысленно Т на столь малые кубики, чтобы их размерами можно было бы пренебречь по сравнению с расстоянием до Q (рис.5).
Рис.5
Вектор ускорения w, сообщаемого Q со стороны s-гo кубика, равен согласно (1)
w=—(Gm/r)r(6)
Поясним, откуда взялся минус и куб в знаменателе. Модуль ускорения равен Gm/r, и он умножен на единичный вектор —r/r направления от массы m к точке Q (рис.5). Полное ускорение равно векторной сумме (6) по всем кубикам. Разумеется, так получается приближенная величина. Чтобы вычислить точную, нужно перейти к пределу, устремляя ребро кубика к нулю. В пределе получим тройной интеграл по телу Т. С помощью хорошего компьютера интеграл взять нетрудно. Но ведь даже для данного тела его нужно считать в огромном количестве точек пространства. Чаще всего идут другим путем. Как уже говорилось, Ньютон сумел вычислить интеграл для шара со сферическим распределением плотности и убедился, что внешние частицы шара притягивают в точности как материальная точка той же массы, помещенная в его центре. А дальше П.-С. Лаплас предложил следующую схему определения гравитационного поля Т. Во-первых, проще вместо векторного поля ускорений иметь дело со скалярным полем гравитационной потенциальной энергии Е единицы массы Q. Оба поля однозначно определяют друг друга. Во-вторых, представим поле в виде ряда, т.е. суммы бесконечного числа слагаемых:
Е=V+V+V+… (7)
Здесь начальное слагаемое описывает притяжение шара с центром в центре масс Т и нам уже известно из формулы (4): V=—К/r. В отличие от силы, потенциал шара убывает обратно пропорционально первой степени расстояния от центра масс Т. Следующие слагаемые V убывают обратно пропорционально r, причем V=0. Если Q далеко, то достаточно взять несколько первых членов (7) или даже только начальный член, чтобы получить удовлетворительную точность. Иными словами, гравитационное поле любого тела с удалением от него все больше напоминает поле шара, в полном соответствии с наблюдением древних софистов, что издали и квадратная башня кажется круглой. Для близких Q (например, если Т — Земля, Q — ИСЗ) для высокоточного определения гравитации надо брать десятки и сотни слагаемых. Каждое из них представляет не очень сложную функцию координат точки Q. Например,