V=(Ax+Ay—(A1+A2)z+Axy+Ayz+Azx)/r
Важно, что V содержит числовые коэффициенты. Например, в V их пять: A÷А. Эти коэффициенты можно определить, измеряя гравитационный потенциал, или ускорение на поверхности тела или вблизи нее. А можно следить за движением его искусственных спутников. В любом случае мы получаем систему многих алгебраических уравнений со многими неизвестными (коэффициентами типа A). Ее решение непросто, но современная математика и вычислительная техника с этим справляется.
Итак, мы описали два способа представления гравитационного поля любого тела: тройным интегралом и рядом Лапласа. Существует еще несколько способов, и в каждой конкретной задаче можно выбрать оптимальный.
Перейдем к вопросу о форме, которую придает гравитация небесному телу. Пусть выполнены следующие три допущения. Во-первых, тело изолировано и компактно, т.е. никакие другие тела на него не действуют, а самогравитация значительна. Во-вторых, тело находится в жидком, газообразном или пластическом состоянии. В третьих, в теле нет источников энергии. Насколько реальны эти допущения?
1. Полной изолированности, конечно, нет. В качестве примера сравним силы, с которыми притягивают каждого из нас Земля (F) и Луна (F). В подлунной точке (там, где Луна видна в зените) в момент, когда Луна в перигее своей орбиты, F максимальна. Но и тогда F/F≈4×10. На самом деле влияние Луны на форму Земли еще меньше. Именно оно вызывает приливы, о чем еще будет рассказано. Сейчас достаточно заметить, что изолированность в Солнечной системе выдержана в очень хорошем приближении.
2. Солнце состоит из газа, планеты-гиганты тоже, с возможным включением жидкой и твердой фазы в центральных слоях, что несущественно. Земля же тверда, и только в центральной части присутствует жидкая фаза. Но на длительные воздействия Земля отвечает как пластическое тело, течет, как воск. — А горы? — спросите вы. Да, некоторые напряжения твердая земля может выдержать. Горы не сплющиваются, впадины не заполняются у нас на глазах. Но высота гор не может превзойти значения порядка 10 км, иначе давление превысит критическое, вещество подошвы станет пластическим, начнет расползаться под действием веса, и в результате высота горы уменьшится.
Подобная пластичность наблюдается у всех больших тел, вплоть до 500 км в диаметре. У малых тел, меньших 200 км в диаметре, гравитация незначительна, предположение пластичности не выполняется. Промежуточный случай 200-500 км с трудом поддается анализу, поскольку нужно знать древнюю историю тел. Если они подвергались сильному нагреву, то в это время были текучими и успели принять форму, диктуемую гравитацией. В противном случае они представляют собой бесформенные глыбы.
3. У планет земной группы, спутников, малых планет внутренние источники энергии существуют в виде рассеянных — в основном в коре — радиоактивных элементов. Но их энерговыделение крайне незначительно и может вызвать перемешивание вещества со скоростями разве что в сантиметры за год. Юпитер выделяет тепло за счет продолжающегося сжатия. Это приводит к конвекции вещества и дифференциальному вращению (период оборота вокруг оси зависит от широты и глубины). Солнце и большинство нормальных звезд спокойно выделяет энергию ядерных реакций, происходящих в центральной части. В результате мы наблюдаем конвекцию и дифференциальное вращение, как у планет группы Юпитера. Это вносит незначительные поправки в чисто гравитационную форму небесных тел.
Можно заключить, что все три предположения выполняются для крупных тел Солнечной системы и для большинства звезд. Хотя бы одно из них неверно для тесных двойных звезд, туманностей и молекулярных облаков, мелких (менее 200-300 км в диаметре) тел, бурно выделяющих энергию звезд. Эти случаи исключим из рассмотрения. Какую форму примет самогравитирующее неподвижное небесное тело? Без всяких вычислений ясно, что форму шара, причем плотность вещества будет зависеть лишь от расстояния до центра шара, убывая от центра к краю. Всякое поднятие над поверхностью должно расползтись, выемка — заполниться, всякое более тяжелое включение должно опуститься, более легкое — всплыть. А нет ли еще каких-либо неожиданных экзотических фигур равновесия неподвижного тела? Нет, и это доказал наш великий соотечественник А.М. Ляпунов (1857—1918), петербургский академик. Как обычно, доказательство несуществования оказалось очень сложным. Стоило ли вообще им заниматься? Стоило, ведь интуиция может подвести, как это видно на примере эллипсоидов Якоби и груш Пуанкаре (см. ниже). Вот откуда шарообразность Луны, Земли, Солнца и множества других небесных тел: правит бал гравитация, а не мифическое совершенство небес.
Теперь включим вращение. В наших предположениях тело будет вращаться вокруг неподвижной оси как целое. Такое вращение называют твердотельным: тело жидкое, но вращается, как будто оно твердое, так что расстояния между частицами неизменны. Действительно, всякие внутренние течения без источников энергии должны в конце концов затухнуть из-за трения.
Раз вращение твердотельно, естественно рассматривать положение каждой частицы в системе отсчета, жестко связанной с небесным телом, вращающейся вместе с ним. Именно такая система естественна для всех, кроме космонавтов. Сидя на стуле, мы считаем себя неподвижными, хотя вертимся вместе с Землей с угловой скоростью 1 оборот в сутки, чему соответствует линейная скорость на экваторе 460м/с (в Петербурге она снижается до 230м/с). Однако вращающаяся система, как принято говорить в физике, неинерциальна. Это значит, что правильное описание движений в такой системе достигается введением сил инерции. В случае равномерного вращения вокруг неподвижной оси таких сил две: кориолисова и центробежная. Кориолисова действует лишь на движущиеся в нашей системе частицы и исчезает, если они не перемещаются друг относительно друга. Центробежная направлена прочь от оси вращения (правильнее было бы говорить об «осебежной» силе, но так не принято) и сообщаемое ею ускорение равно ωR, где ω — угловая скорость, R — расстояние до оси. Частица ощущает лишь векторную сумму двух сил: тяготения и центробежной. Сумма эта называется силой тяжести. Направление последней воспринимается как «низ», противоположное — «верх».